Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-wide functional analysis of hot pepper immune receptors reveals an autonomous NLR clade in seed plants.

Identifieur interne : 000150 ( Main/Exploration ); précédent : 000149; suivant : 000151

Genome-wide functional analysis of hot pepper immune receptors reveals an autonomous NLR clade in seed plants.

Auteurs : Hye-Young Lee [Corée du Sud] ; Hyunggon Mang [Corée du Sud] ; Eunhye Choi [Corée du Sud] ; Ye-Eun Seo [Corée du Sud] ; Myung-Shin Kim [Corée du Sud] ; Soohyun Oh [Corée du Sud] ; Saet-Byul Kim [Corée du Sud] ; Doil Choi [Corée du Sud]

Source :

RBID : pubmed:32810286

Abstract

Plants possess hundreds of intracellular immune receptors encoding nucleotide-binding domain leucine-rich repeat (NLR) proteins. Full-length NLRs or a specific domain of NLRs often induce plant cell death in the absence of pathogen infection. In this study we used genome-wide transient expression analysis to identify a group of NLRs (ANLs; ancient and autonomous NLRs) carrying autoactive coiled-coil (CCA ) domains in pepper (Capsicum annuum). CCA -mediated cell death mimics hypersensitive cell death triggered by the interaction between NLRs and pathogen effectors. Sequence alignment and mutagenesis analyses revealed that the intact α1 helix of CCA s is critical for both CCA - and ANL-mediated cell death. Cell death induced by CCA s does not require NRG1/ADR1 or NRC type helper NLRs, suggesting ANLs may function as singleton NLRs. We also found that CCA s localize to the plasma membrane, as demonstrated for Arabidopsis singleton NLR ZAR1. Extended studies revealed that autoactive CCA s are well conserved in other Solanaceae plants as well as in rice, a monocot plant. Further phylogenetic analyses revealed that ANLs are present in all tested seed plants (spermatophytes). Our study not only uncovers the autonomous NLR clade in plants but also provides powerful resources for dissecting the underlying molecular mechanism of NLR-mediated cell death in plants.

DOI: 10.1111/nph.16878
PubMed: 32810286


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide functional analysis of hot pepper immune receptors reveals an autonomous NLR clade in seed plants.</title>
<author>
<name sortKey="Lee, Hye Young" sort="Lee, Hye Young" uniqKey="Lee H" first="Hye-Young" last="Lee">Hye-Young Lee</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Plant Immunity Research Center, Seoul National University, Seoul, 08826</wicri:regionArea>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mang, Hyunggon" sort="Mang, Hyunggon" uniqKey="Mang H" first="Hyunggon" last="Mang">Hyunggon Mang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Plant Immunity Research Center, Seoul National University, Seoul, 08826</wicri:regionArea>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Choi, Eunhye" sort="Choi, Eunhye" uniqKey="Choi E" first="Eunhye" last="Choi">Eunhye Choi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Plant Immunity Research Center, Seoul National University, Seoul, 08826</wicri:regionArea>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Seo, Ye Eun" sort="Seo, Ye Eun" uniqKey="Seo Y" first="Ye-Eun" last="Seo">Ye-Eun Seo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Plant Immunity Research Center, Seoul National University, Seoul, 08826</wicri:regionArea>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826</wicri:regionArea>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kim, Myung Shin" sort="Kim, Myung Shin" uniqKey="Kim M" first="Myung-Shin" last="Kim">Myung-Shin Kim</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Plant Immunity Research Center, Seoul National University, Seoul, 08826</wicri:regionArea>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Oh, Soohyun" sort="Oh, Soohyun" uniqKey="Oh S" first="Soohyun" last="Oh">Soohyun Oh</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Plant Immunity Research Center, Seoul National University, Seoul, 08826</wicri:regionArea>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826</wicri:regionArea>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kim, Saet Byul" sort="Kim, Saet Byul" uniqKey="Kim S" first="Saet-Byul" last="Kim">Saet-Byul Kim</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Plant Immunity Research Center, Seoul National University, Seoul, 08826</wicri:regionArea>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Choi, Doil" sort="Choi, Doil" uniqKey="Choi D" first="Doil" last="Choi">Doil Choi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Plant Immunity Research Center, Seoul National University, Seoul, 08826</wicri:regionArea>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826</wicri:regionArea>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32810286</idno>
<idno type="pmid">32810286</idno>
<idno type="doi">10.1111/nph.16878</idno>
<idno type="wicri:Area/Main/Corpus">000143</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000143</idno>
<idno type="wicri:Area/Main/Curation">000143</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000143</idno>
<idno type="wicri:Area/Main/Exploration">000143</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-wide functional analysis of hot pepper immune receptors reveals an autonomous NLR clade in seed plants.</title>
<author>
<name sortKey="Lee, Hye Young" sort="Lee, Hye Young" uniqKey="Lee H" first="Hye-Young" last="Lee">Hye-Young Lee</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Plant Immunity Research Center, Seoul National University, Seoul, 08826</wicri:regionArea>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mang, Hyunggon" sort="Mang, Hyunggon" uniqKey="Mang H" first="Hyunggon" last="Mang">Hyunggon Mang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Plant Immunity Research Center, Seoul National University, Seoul, 08826</wicri:regionArea>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Choi, Eunhye" sort="Choi, Eunhye" uniqKey="Choi E" first="Eunhye" last="Choi">Eunhye Choi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Plant Immunity Research Center, Seoul National University, Seoul, 08826</wicri:regionArea>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Seo, Ye Eun" sort="Seo, Ye Eun" uniqKey="Seo Y" first="Ye-Eun" last="Seo">Ye-Eun Seo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Plant Immunity Research Center, Seoul National University, Seoul, 08826</wicri:regionArea>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826</wicri:regionArea>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kim, Myung Shin" sort="Kim, Myung Shin" uniqKey="Kim M" first="Myung-Shin" last="Kim">Myung-Shin Kim</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Plant Immunity Research Center, Seoul National University, Seoul, 08826</wicri:regionArea>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Oh, Soohyun" sort="Oh, Soohyun" uniqKey="Oh S" first="Soohyun" last="Oh">Soohyun Oh</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Plant Immunity Research Center, Seoul National University, Seoul, 08826</wicri:regionArea>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826</wicri:regionArea>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kim, Saet Byul" sort="Kim, Saet Byul" uniqKey="Kim S" first="Saet-Byul" last="Kim">Saet-Byul Kim</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Plant Immunity Research Center, Seoul National University, Seoul, 08826</wicri:regionArea>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Choi, Doil" sort="Choi, Doil" uniqKey="Choi D" first="Doil" last="Choi">Doil Choi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Plant Immunity Research Center, Seoul National University, Seoul, 08826</wicri:regionArea>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826</wicri:regionArea>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plants possess hundreds of intracellular immune receptors encoding nucleotide-binding domain leucine-rich repeat (NLR) proteins. Full-length NLRs or a specific domain of NLRs often induce plant cell death in the absence of pathogen infection. In this study we used genome-wide transient expression analysis to identify a group of NLRs (ANLs; ancient and autonomous NLRs) carrying autoactive coiled-coil (CC
<sup>A</sup>
) domains in pepper (Capsicum annuum). CC
<sup>A</sup>
-mediated cell death mimics hypersensitive cell death triggered by the interaction between NLRs and pathogen effectors. Sequence alignment and mutagenesis analyses revealed that the intact α1 helix of CC
<sup>A</sup>
s is critical for both CC
<sup>A</sup>
- and ANL-mediated cell death. Cell death induced by CC
<sup>A</sup>
s does not require NRG1/ADR1 or NRC type helper NLRs, suggesting ANLs may function as singleton NLRs. We also found that CC
<sup>A</sup>
s localize to the plasma membrane, as demonstrated for Arabidopsis singleton NLR ZAR1. Extended studies revealed that autoactive CC
<sup>A</sup>
s are well conserved in other Solanaceae plants as well as in rice, a monocot plant. Further phylogenetic analyses revealed that ANLs are present in all tested seed plants (spermatophytes). Our study not only uncovers the autonomous NLR clade in plants but also provides powerful resources for dissecting the underlying molecular mechanism of NLR-mediated cell death in plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32810286</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Aug</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-wide functional analysis of hot pepper immune receptors reveals an autonomous NLR clade in seed plants.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16878</ELocationID>
<Abstract>
<AbstractText>Plants possess hundreds of intracellular immune receptors encoding nucleotide-binding domain leucine-rich repeat (NLR) proteins. Full-length NLRs or a specific domain of NLRs often induce plant cell death in the absence of pathogen infection. In this study we used genome-wide transient expression analysis to identify a group of NLRs (ANLs; ancient and autonomous NLRs) carrying autoactive coiled-coil (CC
<sup>A</sup>
) domains in pepper (Capsicum annuum). CC
<sup>A</sup>
-mediated cell death mimics hypersensitive cell death triggered by the interaction between NLRs and pathogen effectors. Sequence alignment and mutagenesis analyses revealed that the intact α1 helix of CC
<sup>A</sup>
s is critical for both CC
<sup>A</sup>
- and ANL-mediated cell death. Cell death induced by CC
<sup>A</sup>
s does not require NRG1/ADR1 or NRC type helper NLRs, suggesting ANLs may function as singleton NLRs. We also found that CC
<sup>A</sup>
s localize to the plasma membrane, as demonstrated for Arabidopsis singleton NLR ZAR1. Extended studies revealed that autoactive CC
<sup>A</sup>
s are well conserved in other Solanaceae plants as well as in rice, a monocot plant. Further phylogenetic analyses revealed that ANLs are present in all tested seed plants (spermatophytes). Our study not only uncovers the autonomous NLR clade in plants but also provides powerful resources for dissecting the underlying molecular mechanism of NLR-mediated cell death in plants.</AbstractText>
<CopyrightInformation>© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Hye-Young</ForeName>
<Initials>HY</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-3797-889X</Identifier>
<AffiliationInfo>
<Affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mang</LastName>
<ForeName>Hyunggon</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-6366-1314</Identifier>
<AffiliationInfo>
<Affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Choi</LastName>
<ForeName>Eunhye</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-2596-7229</Identifier>
<AffiliationInfo>
<Affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Seo</LastName>
<ForeName>Ye-Eun</ForeName>
<Initials>YE</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-6965-7658</Identifier>
<AffiliationInfo>
<Affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Myung-Shin</ForeName>
<Initials>MS</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-5967-4347</Identifier>
<AffiliationInfo>
<Affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Oh</LastName>
<ForeName>Soohyun</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-0003-588X</Identifier>
<AffiliationInfo>
<Affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Saet-Byul</ForeName>
<Initials>SB</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-8826-6265</Identifier>
<AffiliationInfo>
<Affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Choi</LastName>
<ForeName>Doil</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-4366-3627</Identifier>
<AffiliationInfo>
<Affiliation>Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2018R1A5A1023599</GrantID>
<Agency>National Research Foundation</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2018R1A2A1A05019892</GrantID>
<Agency>National Research Foundation</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Capsicum annuum </Keyword>
<Keyword MajorTopicYN="N">cell death</Keyword>
<Keyword MajorTopicYN="N">coiled-coil domain</Keyword>
<Keyword MajorTopicYN="N">plant NLR</Keyword>
<Keyword MajorTopicYN="N">singleton NLR</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32810286</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16878</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Adachi H, Contreras M, Harant A, Wu C, Derevnina L, Sakai T, Duggan C, Moratto E, Bozkurt TO, Maqbool A et al. 2019a. An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. Elife 8: e49956.</Citation>
</Reference>
<Reference>
<Citation>Adachi H, Derevnina L, Kamoun S. 2019b. NLR singletons, pairs, and networks: evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of plants. Current Opinion in Plant Biology 50: 121-131.</Citation>
</Reference>
<Reference>
<Citation>Ade J, DeYoung BJ, Golstein C, Innes RW. 2007. Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proceedings of the National Academy of Sciences, USA 104: 2531-2536.</Citation>
</Reference>
<Reference>
<Citation>Andersson MX, Kourtchenko O, Dangl JL, Mackey D, Ellerström M. 2006. Phospholipase-dependent signalling during the AvrRpm1-and AvrRpt2-induced disease resistance responses in Arabidopsis thaliana. The Plant Journal 47: 947-959.</Citation>
</Reference>
<Reference>
<Citation>Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren JY, Li WW, Noble WS. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37: 202-208.</Citation>
</Reference>
<Reference>
<Citation>Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, dePamphilis C, Albert VA, Aono N, Aoyama T, Ambrose BA et al. 2011. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332: 960-963.</Citation>
</Reference>
<Reference>
<Citation>Baudin M, Hassan JA, Schreiber KJ, Lewis JD. 2017. Analysis of the ZAR1 immune complex reveals determinants for immunity and molecular interactions. Plant Physiology 174: 2038-2053.</Citation>
</Reference>
<Reference>
<Citation>Bernoux M, Ve T, Williams S, Warren C, Hatters D, Valkov E, Zhang X, Ellis JG, Kobe B, Dodds PN. 2011. Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host & Microbe 9: 200-211.</Citation>
</Reference>
<Reference>
<Citation>Bonardi V, Cherkis K, Nishimura MT, Dangl JL. 2012. A new eye on NLR proteins: focused on clarity or diffused by complexity? Current Opinion in Immunology 24: 41-50.</Citation>
</Reference>
<Reference>
<Citation>Bonardi V, Tang S, Stallmann A, Roberts M, Cherkis K, Dangl JL. 2011. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proceedings of the National Academy of Sciences, USA 108: 16463-16468.</Citation>
</Reference>
<Reference>
<Citation>Brommonschenkel SH, Frary A, Frary A, Tanksley SD. 2000. The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Molecular Plant-Microbe Interactions 13: 1130-1138.</Citation>
</Reference>
<Reference>
<Citation>Burch-Smith TM, Schiff M, Caplan JL, Tsao J, Czymmek K, Dinesh-Kumar SP. 2007. A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biology 5: 501-514.</Citation>
</Reference>
<Reference>
<Citation>Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972-1973.</Citation>
</Reference>
<Reference>
<Citation>Casey LW, Lavrencic P, Bentham AR, Cesari S, Ericsson DJ, Croll T, Turk D, Anderson PA, Mark AE, Dodds PN et al. 2016. The CC domain structure from the wheat stem rust resistance protein Sr33 challenges paradigms for dimerization in plant NLR proteins. Proceedings of the National Academy of Sciences, USA 113: 12856-12861.</Citation>
</Reference>
<Reference>
<Citation>Castel B, Ngou PM, Cevik V, Redkar A, Kim DS, Yang Y, Ding P, Jones JDG. 2019. Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1. New Phytologist 222: 966-980.</Citation>
</Reference>
<Reference>
<Citation>Catanzariti AM, Dodds PN, Ve T, Kobe B, Ellis JG, Staskawicz BJ. 2010. The AvrM effector from flax rust has a structured C-terminal domain and interacts directly with the M resistance protein. Molecular Plant-Microbe Interactions 23: 49-57.</Citation>
</Reference>
<Reference>
<Citation>Chiarini F, Bernardello G. 2006. Karyotype studies in South American species of Solanum subgen. Leptostemonum (Solanaceae). Plant Biology 8: 486-493.</Citation>
</Reference>
<Reference>
<Citation>Collier SM, Hamel LP, Moffett P. 2011. Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein. Molecular Plant-Microbe Interactions 24: 918-931.</Citation>
</Reference>
<Reference>
<Citation>Dangl JL, Horvath DM, Staskawicz BJ. 2013. Pivoting the plant immune system from dissection to deployment. Science 341: 746-751.</Citation>
</Reference>
<Reference>
<Citation>Day B, Dahlbeck D, Huang J, Chisholm ST, Li D, Staskawicz BJ. 2005. Molecular basis for the RIN4 negative regulation of RPS2 disease resistance. The Plant Cell 17: 1292-1305.</Citation>
</Reference>
<Reference>
<Citation>De Oliveira AS, Koolhaas I, Boiteux LS, Caldararu OF, Petrescu AJ, Resende RO, Kormelink R. 2016. Cell death triggering and effector recognition by Sw-5 SD-CNL proteins from resistant and susceptible tomato isolines to Tomato spotted wilt virus. Molecular Plant Pathology 17: 1442-1454.</Citation>
</Reference>
<Reference>
<Citation>Dodds PN, Rathjen JP. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics 11: 539-548.</Citation>
</Reference>
<Reference>
<Citation>Eddy SR. 2011. Accelerated profile HMM searches. PLoS Computational Biology 7: e1002195.</Citation>
</Reference>
<Reference>
<Citation>Edwards KD, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans AD, Bombarely A, Allen F, Hurst R, White B, Kernodle SP et al. 2017. A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics 18: 448.</Citation>
</Reference>
<Reference>
<Citation>Gao X, Chen X, Lin W, Chen S, Lu D, Niu Y, Li L, Cheng C, McCormack M, Jen Sheen et al. 2013. Bifurcation of Arabidopsis NLR immune signaling via Ca2+-dependent protein kinases. PLoS Pathogen 9: e1003127.</Citation>
</Reference>
<Reference>
<Citation>Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology 53: 205-227.</Citation>
</Reference>
<Reference>
<Citation>Gopalan S, Wei W, He SY. 1996. hrp gene-dependent induction of hin1: a plant gene activated rapidly by both harpins and the avrPto gene-mediated signal. The Plant Journal 10: 591-600.</Citation>
</Reference>
<Reference>
<Citation>Hamel LP, Sekine KT, Wallon T, Sugiwaka Y, Kobayashi K, Moffett P. 2016. The chloroplastic protein THF1 interacts with the Coiled-Coil domain of the disease resistance protein N' and regulates light-dependent cell death. Plant Physiology 171: 658-674.</Citation>
</Reference>
<Reference>
<Citation>Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518-522.</Citation>
</Reference>
<Reference>
<Citation>Hu LS, Xu ZP, Wang MJ, Fan R, Yuan DJ, Wu BD, Wu HS, Qin XW, Yan L, Tan LH et al. 2019. The chromosome-scale reference genome of black pepper provides insight into piperine biosynthesis. Nature Communications 10: 1-11.</Citation>
</Reference>
<Reference>
<Citation>Ishihama N, Yamada R, Yoshioka M, Katou S, Yoshioka H. 2011. Phosphorylation of the Nicotiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response. The Plant Cell 23: 1153-1170.</Citation>
</Reference>
<Reference>
<Citation>Jacob F, Vernaldi S, Maekawa T. 2013. Evolution and conservation of plant NLR functions. Frontiers in Immunology 4: 297.</Citation>
</Reference>
<Reference>
<Citation>Jin H, Axtell MJ, Dahlbeck D, Ekwenna O, Zhang S, Staskawicz B, Baker B. 2002. NPK1, an MEKK1-like mitogen-activated protein kinase kinase kinase, regulates innate immunity and development in plants. Developmental Cell 3: 291-297.</Citation>
</Reference>
<Reference>
<Citation>Jones AM, Coimbra S, Fath A, Sottomayor M, Thomas H. 2001. Programmed cell death assays for plants. Methods in Cell Biology 66: 437-451.</Citation>
</Reference>
<Reference>
<Citation>Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444: 323-329.</Citation>
</Reference>
<Reference>
<Citation>Jones P, Binns D, Chang HY, Fraser M, Li WZ, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G et al. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30: 1236-1240.</Citation>
</Reference>
<Reference>
<Citation>Jupe F, Pritchard L, Etherington GJ, MacKenzie K, Cock PJA, Wright F, Sharma SK, Bolser D, Bryan GJ, Jones JDG et al. 2012. Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics 13: 75.</Citation>
</Reference>
<Reference>
<Citation>Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587-589.</Citation>
</Reference>
<Reference>
<Citation>Katoh K, Standley DM. 2013. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772-780.</Citation>
</Reference>
<Reference>
<Citation>Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu JZ, Zhou SG et al. 2013. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6: 4.</Citation>
</Reference>
<Reference>
<Citation>Kim SB, Kang WH, Huy HN, Yeom SI, An JT, Kim S, Kang MY, Kim HJ, Jo YD, Ha Y et al. 2017. Divergent evolution of multiple virus-resistance genes from a progenitor in Capsicum spp. New Phytologist 213: 886-899.</Citation>
</Reference>
<Reference>
<Citation>Kim SB, Lee HY, Choi EH, Park E, Kim JH, Moon KB, Kim HS, Choi D. 2018. The coiled-coil and leucine-rich repeat domain of the potyvirus resistance protein Pvr4 has a distinct role in signaling and pathogen recognition. Molecular Plant-Microbe Interactions 31: 906-913.</Citation>
</Reference>
<Reference>
<Citation>Kim SB, Lee HY, Seo S, Lee JH, Choi D. 2015. RNA-dependent RNA polymerase (NIb) of the potyviruses is an avirulence factor for the broad-spectrum resistance gene Pvr4 in Capsicum annuum cv. CM334. PLoS ONE 10: e0119639.</Citation>
</Reference>
<Reference>
<Citation>Kim S, Park J, Yeom SI, Kim YM, Seo E, Kim KT, Kim MS, Lee JM, Cheong K, Shin HS et al. 2017. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biology 18: 210.</Citation>
</Reference>
<Reference>
<Citation>Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT et al. 2014. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nature Genetics 46: 270-278.</Citation>
</Reference>
<Reference>
<Citation>Krasileva KV, Dahlbeck D, Staskawicz BJ. 2010. Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. The Plant Cell 22: 2444-2458.</Citation>
</Reference>
<Reference>
<Citation>Kumar S, Stecher G, Suleski M, Hedges SB. 2017. TimeTree: a resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution 34: 1812-1819.</Citation>
</Reference>
<Reference>
<Citation>Liu Y, Schiff M, Dinesh-Kumar SP. 2002. Virus-induced gene silencing in tomato. The Plant Journal 31: 777-786.</Citation>
</Reference>
<Reference>
<Citation>Maekawa T, Cheng W, Spiridon LN, Toller A, Lukasik E, Saijo Y, Liu P, Shen QH, Micluta MA, Somssich IE et al. 2011. Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host & Microbe 9: 187-199.</Citation>
</Reference>
<Reference>
<Citation>Meng X, Zhang S. 2013. MAPK cascades in plant disease resistance signaling. Annual Review of Phytopathology 53: 245-266.</Citation>
</Reference>
<Reference>
<Citation>Mestre P, Baulcombe DC. 2006. Elicitor-mediated oligomerization of the tobacco N disease resistance protein. The Plant Cell 18: 491-501.</Citation>
</Reference>
<Reference>
<Citation>Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW. 2003. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. The Plant Cell 15: 809-834.</Citation>
</Reference>
<Reference>
<Citation>Moffett P, Farnham G, Peart J, Baulcombe DC. 2002. Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. The EMBO Journal 21: 4511-4519.</Citation>
</Reference>
<Reference>
<Citation>Mucyn TS, Clemente A, Andriotis VME, Balmuth AL, Oldroyd GED, Staskawicz BJ, Rathjen JP. 2006. The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. The Plant Cell 18: 2792-2806.</Citation>
</Reference>
<Reference>
<Citation>Narusaka M, Shirasu K, Noutoshi Y, Kubo Y, Shiraishi T, Iwabuchi M, Narusaka Y. 2009. RRS1 and RPS4 provide a dual resistance-gene system against fungal and bacterial pathogens. The Plant Journal 60: 218-226.</Citation>
</Reference>
<Reference>
<Citation>Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268-274.</Citation>
</Reference>
<Reference>
<Citation>Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A et al. 2013. The Norway spruce genome sequence and conifer genome evolution. Nature 497: 579-584.</Citation>
</Reference>
<Reference>
<Citation>Oh SK, Kim SB, Yeom SI, Lee HA, Choi D. 2010. Positive-selection and ligation-independent cloning vectors for large scale in planta expression for plant functional genomics. Molecules and Cells 30: 557-562.</Citation>
</Reference>
<Reference>
<Citation>Osuna-Cruz CM, Paytuvi-Gallart A, Di Donato A, Sundesha V, Andolfo G, Cigliano RA, Sanseverino W, Ercolano MR. 2018. PRGdb 3.0: a comprehensive platform for prediction and analysis of plant disease resistance genes. Nucleic Acids Research 46: D1197-D1201.</Citation>
</Reference>
<Reference>
<Citation>Peart JR, Mestre P, Lu R, Malcuit I, Baulcombe DC. 2005. NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Current Biology 15: 968-973.</Citation>
</Reference>
<Reference>
<Citation>Pike SM, Zhang XC, Gassmann W. 2005. Electrophysiological characterization of the Arabidopsis avrRpt2-specific hypersensitive response in the absence of other bacterial signals. Plant Physiology 138: 1009-1017.</Citation>
</Reference>
<Reference>
<Citation>Rairdan GJ, Collier SM, Sacco MA, Baldwin TT, Boettrich T, Moffett P. 2008. The coiled-coil and nucleotide binding domains of the Potato Rx disease resistance protein function in pathogen recognition and signaling. The Plant Cell 20: 739-751.</Citation>
</Reference>
<Reference>
<Citation>Rodriguez-Moreno L, Song Y, Thomma BP. 2017. Transfer and engineering of immune receptors to improve recognition capacities in crops. Current Opinion in Plant Biology 38: 42-49.</Citation>
</Reference>
<Reference>
<Citation>Sacco MA, Mansoor S, Moffett P. 2007. A RanGAP protein physically interacts with the NB-LRR protein Rx, and is required for Rx-mediated viral resistance. The Plant Journal 52: 82-93.</Citation>
</Reference>
<Reference>
<Citation>Sato S, Tabata S, Hirakawa H, Asamizu E, Shirasawa K, Isobe S, Kaneko T, Nakamura Y, Shibata D, Aoki K et al. 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485: 635-641.</Citation>
</Reference>
<Reference>
<Citation>Saucet SB, Ma Y, Sarris PF, Furzer OJ, Sohn KH, Jones JD. 2015. Two linked pairs of Arabidopsis TNL resistance genes independently confer recognition of bacterial effector AvrRps4. Nature Communications 6: 6338.</Citation>
</Reference>
<Reference>
<Citation>Saur IM, Bauer S, Kracher B, Lu X, Franzeskakis L, Muller MC, Sabelleck B, Kummel F, Panstruga R, Maekawa T et al. 2019. Multiple pairs of allelic MLA immune receptor-powdery mildew AVRA effectors argue for a direct recognition mechanism. Elife 8: e44471.</Citation>
</Reference>
<Reference>
<Citation>Seo E, Kim S, Yeom SI, Choi D. 2016. Genome-wide comparative analyses reveal the dynamic evolution of nucleotide-binding leucine-rich repeat gene family among Solanaceae plants. Frontiers in Plant Science 7: 1205.</Citation>
</Reference>
<Reference>
<Citation>Shao ZQ, Xue JY, Wu P, Zhang YM, Wu Y, Hang YY, Wang B, Chen JQ. 2016. Large-scale analyses of angiosperm nucleotide-binding site-leucine-rich repeat genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiology 170: 2095-2109.</Citation>
</Reference>
<Reference>
<Citation>Steuernagel B, Jupe F, Witek K, Jones JDG, Wulff BBH. 2015. NLR-parser: rapid annotation of plant NLR complements. Bioinformatics 31: 1665-1667.</Citation>
</Reference>
<Reference>
<Citation>Sukarta OCA, Slootweg EJ, Goverse A. 2016. Structure-informed insights for NLR functioning in plant immunity. Seminars in Cell & Developmental Biology 56: 134-149.</Citation>
</Reference>
<Reference>
<Citation>Wang J, Hu M, Wang J, Qi J, Han Z, Wang G, Qi Y, Wang HW, Zhou JM, Chai J. 2019a. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364: eaav5870.</Citation>
</Reference>
<Reference>
<Citation>Wang J, Wang J, Hu M, Wu S, Qi J, Wang G, Han Z, Qi Y, Gao N, Wang HW et al. 2019b. Ligand-triggered allosteric ADP release primes a plant NLR complex. Science 364: eaav5868.</Citation>
</Reference>
<Reference>
<Citation>Weitzel C, Simonsen HT. 2015. Cytochrome P450-enzymes involved in the biosynthesis of mono- and sesquiterpenes. Phytochemistry Reviews 14: 7-24.</Citation>
</Reference>
<Reference>
<Citation>Wroblewski T, Spiridon L, Martin EC, Petrescu AJ, Cavanaugh K, Truco MJ, Xu H, Gozdowski D, Pawlowski K, Michelmore RW et al. 2018. Genome-wide functional analyses of plant coiled-coil NLR-type pathogen receptors reveal essential roles of their N-terminal domain in oligomerization, networking, and immunity. PLoS Biology 16: e2005821.</Citation>
</Reference>
<Reference>
<Citation>Wu CH, Abd-El-Haliem A, Bozkurt TO, Belhaj K, Terauchi R, Vossen JH, Kamoun S. 2017. NLR network mediates immunity to diverse plant pathogens. Proceedings of the National Academy of Sciences, USA 11: 8113-8118.</Citation>
</Reference>
<Reference>
<Citation>Xu X, Pan SK, Cheng SF, Zhang B, Mu DS, Ni PX, Zhang GY, Yang S, Li RQ, Wang J et al. 2011. Genome sequence and analysis of the tuber crop potato. Nature 475: 189-194.</Citation>
</Reference>
<Reference>
<Citation>Yu GC, Lam TTY, Zhu HC, Guan Y. 2018. Two methods for mapping and visualizing associated data on phylogeny using Ggtree. Molecular Biology and Evolution 35: 3041-3043.</Citation>
</Reference>
<Reference>
<Citation>Yu GC, Smith DK, Zhu HC, Guan Y, Lam TTY. 2017. GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution 8: 28-36.</Citation>
</Reference>
<Reference>
<Citation>Zhang Y, Dorey S, Swiderski M, Jones JD. 2004. Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. The Plant Journal 40: 213-224.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
</country>
<settlement>
<li>Séoul</li>
</settlement>
<orgName>
<li>Université nationale de Séoul</li>
</orgName>
</list>
<tree>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Lee, Hye Young" sort="Lee, Hye Young" uniqKey="Lee H" first="Hye-Young" last="Lee">Hye-Young Lee</name>
</noRegion>
<name sortKey="Choi, Doil" sort="Choi, Doil" uniqKey="Choi D" first="Doil" last="Choi">Doil Choi</name>
<name sortKey="Choi, Doil" sort="Choi, Doil" uniqKey="Choi D" first="Doil" last="Choi">Doil Choi</name>
<name sortKey="Choi, Eunhye" sort="Choi, Eunhye" uniqKey="Choi E" first="Eunhye" last="Choi">Eunhye Choi</name>
<name sortKey="Kim, Myung Shin" sort="Kim, Myung Shin" uniqKey="Kim M" first="Myung-Shin" last="Kim">Myung-Shin Kim</name>
<name sortKey="Kim, Saet Byul" sort="Kim, Saet Byul" uniqKey="Kim S" first="Saet-Byul" last="Kim">Saet-Byul Kim</name>
<name sortKey="Mang, Hyunggon" sort="Mang, Hyunggon" uniqKey="Mang H" first="Hyunggon" last="Mang">Hyunggon Mang</name>
<name sortKey="Oh, Soohyun" sort="Oh, Soohyun" uniqKey="Oh S" first="Soohyun" last="Oh">Soohyun Oh</name>
<name sortKey="Oh, Soohyun" sort="Oh, Soohyun" uniqKey="Oh S" first="Soohyun" last="Oh">Soohyun Oh</name>
<name sortKey="Seo, Ye Eun" sort="Seo, Ye Eun" uniqKey="Seo Y" first="Ye-Eun" last="Seo">Ye-Eun Seo</name>
<name sortKey="Seo, Ye Eun" sort="Seo, Ye Eun" uniqKey="Seo Y" first="Ye-Eun" last="Seo">Ye-Eun Seo</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000150 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000150 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32810286
   |texte=   Genome-wide functional analysis of hot pepper immune receptors reveals an autonomous NLR clade in seed plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32810286" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020